Package: RGS 1.0
RGS: Recursive Gradient Scanning Algorithm
Provides a recursive gradient scanning algorithm for discretizing continuous variables in Logistic and Cox regression models. This algorithm is especially effective in identifying optimal cut-points for variables with U-shaped relationships to 'lnOR' (the natural logarithm of the odds ratio) or 'lnHR' (the natural logarithm of the hazard ratio), thereby enhancing model fit, interpretability, and predictive power. By iteratively scanning and calculating gradient changes, the method accurately pinpoints critical cut-points within nonlinear relationships, transforming continuous variables into categorical ones. This approach improves risk classification and regression analysis performance, increasing interpretability and practical relevance in clinical and risk management settings.
Authors:
RGS_1.0.tar.gz
RGS_1.0.zip(r-4.5)RGS_1.0.zip(r-4.4)
RGS_1.0.tgz(r-4.4-any)
RGS_1.0.tar.gz(r-4.5-noble)RGS_1.0.tar.gz(r-4.4-noble)
RGS_1.0.tgz(r-4.4-emscripten)
RGS.pdf |RGS.html✨
RGS/json (API)
# Install 'RGS' in R: |
install.packages('RGS', repos = c('https://shuo-yang-sysu.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 26 days agofrom:0648ccf3f8. Checks:5 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Dec 20 2024 |
R-4.5-win | OK | Dec 20 2024 |
R-4.5-linux | OK | Dec 20 2024 |
R-4.4-win | OK | Dec 20 2024 |
R-4.4-mac | OK | Dec 20 2024 |
Exports:rgs_for_coxrgs_for_logistictest_ushape_coxtest_ushape_logistic
Dependencies:backportsbase64encbslibcachemcheckmatecliclustercodetoolscolorspacedata.tabledigestevaluatefansifarverfastmapfontawesomeforeignFormulafsggplot2gluegridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetsisobandjquerylibjsonliteknitrlabelinglatticelifecyclemagrittrMASSMatrixMatrixModelsmemoisemgcvmimemultcompmunsellmvtnormnlmennetpillarpkgconfigpolsplinequantregR6rappdirsRColorBrewerrlangrmarkdownrmsrpartrstudioapisandwichsassscalesSemiParSparseMstringistringrsurvivalTH.datatibbletinytexutf8vctrsviridisviridisLitewithrxfunyamlzoo